5,246 research outputs found

    Analysis of derived features for the motion classification of a passive lower limb exoskeleton

    Get PDF
    Analysis of Derived Features for the Motion Classification of a PassiveLowerLimbExoskeleton The recognition of human motion intentions is a fundamental requirement to control efficiently an exoskeleton system. The exoskeleton control can be enhanced or subsequent motions can be predicted, if the current intended motion is known. At H2T research has been carried out with a classification system based on Hidden Markov Models (HMMs) to classify the multi-modal sensor data acquired from a unilateral passive lower-limb exoskeleton. The training data is formed of force vectors, linear accelerations and Euler angles provided by 7 3D-force sensors and 3 IMUs. The recordings consist of data of 10 subjects performing 14 different types of daily activities, each one carried out 10 times. This master thesis attempts to improve the motion classification by using physical meaningful derived features from the raw data aforementioned. The knee vector moment and the knee and ankle joint angles, which respectively give a kinematic and dynamic description of a motion, were the derived features considered. Firstly, these new features are analysed to study their patterns and the resemblance of the data among different subjects is quantified in order to check their consistency. Afterwards, the derived features are evaluated in the motion classification system to check their performance. Various configurations of the classifier were tested including different preprocessors of the data employed and the structure of the HMMs used to represent each motion. Some setups combining derived features and raw data led to good results (e.g. norm of the moment vector and IMUs got 89.39% of accuracy), but did not improve the best results of previous works (e.g. 2 IMUs and 1 Force Sensor got 90.73% of accuracy). Although the classification results are not improved, it is proved that these derived features are a good representation of their primary features and a suitable option if a dimensional reduction of the data is pursued. At the end, possible directions of improvement are suggested to improve the motion classification concerning the results obtained along the thesis.Outgoin

    Design of controllers and its implementation for a line tracker vehicle

    Get PDF
    The first part of the project consists of a motor control enhancement of the line tracker vehicle. It is used a feed forward signal to make a first attempt to control the motors, and right after a Proportional Integral controller is implemented to adjust the response. The second part is about the wheel speed measurement system. In that section it is dealt with the encoder’s limitations and how to solve them to get an appropriate performance. The third part is addressed to the line sensor and the trajectory control. An improvement of the line sensor data acquisition is exposed and it is explained how the trajectory control operates. Apart from all the tasks done with the vehicle’s control, there is a section in which it is worked on the WiFi communication system which monitors the vehicle from a computer. It is explained how it works, how to get a suitable usage and it is shown an interface to manage and see the data transmitted. Finally it is presented an experimental test set in which it is shown how the vehicle’s behaviour is. In these tests it is determined which control parameters are the most suitable to get the best behaviour of the vehicl

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page
    corecore